

RNAGlib Official Documentation

RNAGlib (RNA Geometric Library) is a Python package for studying models of RNA 3D structures.

Core Features

	Quick access to all available RNA 3D structures with annotations

	Rich functionality for 2.5D RNA graphs, point clouds, and voxels

	RNA graph visualization

	Machine Learning benchmarking tasks

Get started with RNAGlib

	Install

	Quickstart

	Learn about RNA 2.5D Graphs

	Annotation reference

Tutorials

	Working with 2.5D graphs datasets

	Training machine learning models

Package Structure

	rnaglib.prepare_data: processes raw PDB structures and
builds a database of 2.5D graphs with full structural annotation

	rnaglib.data_loading: custom PyTorch dataloader and dataset implementations

	rnaglib.representations: graph, voxel, point cloud representations

	rnaglib.learning: learning routines and pre-built GCN models for the easiest use of the
package.

	rnaglib.drawing: utilities for visualizing 2.5D graphs

	rnaglib.ged: custom graph similarity functions

	rnaglib.kernels: custom local neighbourhood similarity functions

Source Code and Contact

	RNAglib homepage [https://rnaglib.cs.mcgill.ca].

	Source Code [https://github.com/cgoliver/rnaglib].

	Contact rnaglib@cs.mcgill.ca

Associated Repositories

RNAmigos [https://github.com/cgoliver/RNAmigos] : a research paper published in Nucleic Acid Research that
demonstrates the usefulness of 2.5D graphs for machine learning tasks, exemplified onto the drug discovery application.

VeRNAl [https://github.com/cgoliver/vernal] : a research paper published in Bioinformatics that uses learnt
vector representations of RNA subgraphs to mine structural motifs in RNA.

References

	Leontis, N. B., & Zirbel, C. L. (2012). Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In RNA 3D Structure Analysis and Prediction N. Leontis & E. Westhof (Eds.), (Vol. 27, pp. 281–298). Springer Berlin Heidelberg. doi:10.1007/978-3-642-25740-7_13

Indices and tables

	Index

	Module Index

	Search Page

Installation

PyPi Install

$ pip install rnaglib

Latest version

$ git clone https://github.com/cgoliver/rnaglib.git
$ cd rnaglib
$ pip install .

Warning

RNAglib does not install downstream deep learning frameworks which you may need for model training and data loading.
See installation instructions for dgl [https://dgl.ai/] and pytorch-geometric [https://pytorch-geometric.readthedocs.io/].

Quickstart

Get the data

Once you have installed RNAglib, you can fetch a pre-built dataset of RNA structures using the command line:

rnaglib_download

By default you will get non-redundant RNA structures saved to ~/.rnaglib.

To obtain different versions or larger sets of RNAs have a look at the command line options rnaglib_download --help.

Load single RNA

Annotations for each RNA are accessed through networkx graph objects.
You can load one RNA using graph_from_pdbid()

>>> from rnaglib.utils import available_pdbids
>>> from rnaglib.utils import graph_from_pdbid

>>> pdbids = available_pdbids()
>>> rna = graph_from_pdbid(pdbids[0])
>>> rna
DiGraph with 69 nodes and 194 edges
>>> rna.graph
{'dbn': {'all_chains': {'num_nts': 143, 'num_chars': 144, 'bseq': 'GCCCGGAUAGCUCAGUCGGUAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUUCCGAGUCUGGGCAC&CGGAUAGCUCAGUCGGUAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUUCCGAGUCCGGGC', 'sstr': '(((((((..((((.....[..)))).(((((.......))))).....(((((..]....))))))))))))..&((((..((((.....[..)))).(((((.......))))).....(.(((..]....))).)))))...', 'form': 'AAAAAA...AA...A.......AAA.AAAA.......A.AAA......AAAAA..A....AAAAAAAAAAAA.-&.AA...AA...A.......AAA.AAAA.......A.AAA......AAAAA..A....A...AAAA.A.-'}...,

See the data tutorial for more on the data.

Load an RNA Dataset

For machine learning purposes, we often want a collection of data objects in one place.
For that we have the RNADataset object.:

from rnaglib.data_loading import RNADataset

dataset = RNADataset()

This object holds the same objects as above but also supports ML functionalities such as converting the RNAs to different representations (graphs, point clouds, voxels) and to different frameworks (dgl, torch, pytorch geometric)
See the ML tutorial for more on model training and tasks.

What is an RNA 2.5D structure?

RNA 2.5D structures are discrete graph-based representations of atomic coordinates derived
from techniques such as X-ray crystallography and NMR. This type of representation encodes
all possible base pairing interactions which are known to be crucial for understanding RNA function.

[image: Example graph]

Why use RNA 2.5D data?

The benefit is twofold. When dealing with RNA 3D data, a representation centered on
base pairing is a very natural prior which has been shown to carry important signals for
complex interactions, and can be directly interpreted.
Second, adopting graph representations lets us take advantage of many powerful algorithmic tools
such as graph neural networks and graph kernels.

What type of functional data is included?

The graphs are annotated with graph, node, and edge-level attributes.
These include, but are not limited to:

	Secondary structure

	Protein binding

	Small molecule binding

	Chemical modifications

	3-D coordinates

	Leontis-westhof base pair geometry classification

We provide a visualization of what the graphs in this database contain.
A more detailed description of the data is presented in rnaglib.data.

Building RNA Databases with RNAglib

This module (prepare_data) contains all the necessary code to build databases of annotated RNA 3D structures, and the user interfaces with it through the rnaglib_prepare_data command line script.
Dataset creation follows the following steps:

	
	Fetching the raw RNA structures from either:
	
	RCSB PDB Databank (accepts the –nr flag to only use structures in the [BGSU Representative Set](https://www.bgsu.edu/research/rna/databases/non-redundant-list.html)

	A local user-defined folder

	For each structure, run x3dna-dssr

	Store x3dna-dssr output in a networkx Graph object

	
	If the –annotate flag is passed for pre-training:
	
	Chop the whole RNAs into smaller chunks

	Pre-compute local neighbourhoods

	Extract all graphlets

Quickstart

Print the help message:

$ rnaglib_prepare_data -h

To run a quick debug build with default values:

$ rnaglib_prepare_data -s structures/ --tag first_build -o builds/ -d

Data versioning

The optional argument –tag is used to name the folder containing the final output.
For our distributions we use rnaglib-<’all’ or ‘nr’><’-annotated’ or ‘’><’-chopped’ or ‘’>-<version> depending on the build options.
We distribute data builds with all available RNAs and assign all to the tag, and non-redundant structures according to the [BGSU Representative Set](https://www.bgsu.edu/research/rna/databases/non-redundant-list.html).
For each of these two choices, we also provide versions pre-processed for [graphlet kernel](https://rnaglib.cs.mcgill.ca/static/docs/html/rnaglib.kernels.html) computations used to compute node similarity and assign the annot value to the tag.

Output

After running the –debug test run above, your ./builds/ folder will contain a single sub-folder called ./builds/graphs with 10 .json files and a file ./builds/graphs/errors.csv. Each of these JSONs contains the annotated RNAs and the CSV contains a list of RNAs that failed to build and the failure reason.

Data building options

	–nr only outputs RNAs from the non-redundant set from BGSU

	–chop creates a sub-folder in the build called chops which contains chunked RNAs for even batch sizes

	–annot builds necessary annotations for computing node similarities

Citing

If you use this tool in your work, we thank you for citing:

@article{mallet2022rnaglib,
 title={RNAglib: a python package for RNA 2.5 D graphs},
 author={Mallet, Vincent and Oliver, Carlos and Broadbent, Jonathan and Hamilton, William L and Waldisp{\"u}hl, J{\'e}r{\^o}me},
 journal={Bioinformatics},
 volume={38},
 number={5},
 pages={1458--1459},
 year={2022},
 publisher={Oxford University Press}
}

Working with 2.5D graphs

Now that we know what is an RNA 2.5D graph we can inspect the graph using rnaglib.

Fetching hosted graphs

The libray ships with some pre-built datasets which you can download with the following command line:

$ rnaglib_download

This will download the default data distribution to ~/.rnaglib

To see the list of available PDBs you downloaded, use:

from rnaglib.utils import available_pdbids
returns a list of PDBIDs
pdbids = available_pdbids()
get the first RNA by PDBID
rna = graph_from_pdbid(pdbids[0])

Warning

The list of available PDBs depends on which data build you want to use. See preparing data for more info on versioning and data build arguments. You can pass these arguments to the available_pdbids(redundancy=’all’, version=’0.0.0’, annotated=True) for non-default builds.

Overview of the 2.5D Graphs

First, let us have a look at the 2.5d graph object from a code perspective.
We use networkx to store the RNA information in a nx.DiGraph directed graph object.
Once the graphs are downloaded, they can be fetched directly using their PDBID.

Since nodes represent nucleotides, the node data dictionary will include features such as nucleotide type,
position, 3D coordinates, etc…
Nodes are assigned an ID in the form <pdbid.chain.position>.
Using node IDs we can access node and edge attributes as dictionary keys.

>>> from rnaglib.utils import graph_from_pdbid
>>> G = graph_from_pdbid("4nlf")
>>> G.nodes['4nlf.A.2647']
 {'index': 1, 'index_chain': 1, 'chain_name': 'A', 'nt_resnum': 2647, 'nt_name': 'U', 'nt_code': 'U',
 'binding_protein': None, 'binding_ion': None, 'binding_small-molecule': None}

The RNA 2.5D graph contains a rich set of annotations.
For a complete list of these annotations see this page.

Visualization

To visualize the 2.5D graphs in the format described above, we have implemented a drawing toolbox with several
functions. The easiest way to use it in your application is to call rnaglib.drawing.draw(graph, show=True).
A functioning installation of Latex is needed for correct plotting of the graphs. If no installation is detected,
the graphs will be plotted using the LaTex reduced features that ships with matplotlib.

>>> from rnaglib.drawing import rna_draw
>>> rna_draw(G, show=True, layout="spring")

[image: _images/g.png]
In the next two examples we will show how you can make use of these annotations to study chemical modifications and RNA-protein binding sites.

Analyzing RNA-small molecule binding sites

In this short example we will compute some statistics to describe the kinds of structural features around RNA-small molecule binding pockets using RNAGlib.

Let’s get our graphs. We are using the default data build which contains whole non-redundant RNA structures.
We will iterate over all available non-redundant RNAs and extract residues near small molecules.

from rnaglib.utils import available_pdbids
from rnaglib.utils import graph_from_pdbid

pockets = []
for i,G in enumerate(graphs):
 try:
 pocket = [n for n, data in G.nodes(data=True) if data['binding_small-molecule'] is not None]
 # sample same number of random nucleotides
 non_pocket = random.sample(list(G.nodes()), k=len(pocket))
 except KeyError as e:
 continue
 if pocket:
 pockets.append((pocket, non_pocket, G))
 else:
 # no pocket found
 pass

Now we have a list of pockets where each is a thruple of a list of pocket nodes, a list of non-pocket nodes, and the parent graph.
Let’s collect some stats about these residues.
Namely, what base pair types and secondary structure elements they are involved in.

bps, sses = [], []

for pocket, non_pocket, G in pockets:
 for nt in pocket:
 # add edge type of all base pairs in pocket
 bps.extend([{'bp_type': data['LW'],
 'is_pocket': True} for _,data in G[nt].items()])
 # sse key is format '<sse type>_<id>'
 node_data = G.nodes[nt]
 if node_data['sse']['sse'] is None:
 continue
 sses.append({'sse_type': node_data['sse']['sse'].split("_")[0],
 'is_pocket': True})

 # do the same for non-pocket
 for nt in non_pocket:
 # add edge type of all base pairs in pocket
 bps.extend([{'bp_type': data['LW'],
 'is_pocket': False} for _,data in G[nt].items()])
 # sse key is format '<sse type>_<id>'
 node_data = G.nodes[nt]
 if node_data['sse']['sse'] is None:
 continue
 sses.append({'sse_type': node_data['sse']['sse'].split("_")[0],
 'is_pocket':False})

for convenience convert to dataframe
bp_df = pd.DataFrame(bps)
sse_df = pd.DataFrame(sses)

Finally we can draw some plots of the base pair type and secondary structure element distribution around small molecule binding sites.

remove backbones
bp_df = bp_df.loc[~bp_df['bp_type'].isin(['B35', 'B53'])]

sns.histplot(y='bp_type', hue='is_pocket', multiple='dodge', stat='proportion', data=bp_df)
sns.despine(left=True, bottom=True)
plt.savefig("bp.png")
plt.clf()

sns.histplot(y='sse_type', hue='is_pocket', multiple='dodge', stat='proportion', data=sse_df)
sns.despine(left=True, bottom=True)
plt.savefig("sse.png")
plt.clf()

This is the distribution of secondary structures in binding pockets and in a random sample of residues:

[image: _images/sse.png]
And the same but for the different LW base pair geometries:

[image: _images/bp.png]
From this small experiment we confirm a property [https://academic.oup.com/nar/article/38/18/5982/1065889] of RNA binding sites which is that they tend to occur in looping regions with a slight tendency towards non-canonical (non-CWW) base pair geometries.

Download source code for this example.

Aligning two RNA graphs: Graph Edit Distance (GED)

GED is the gold standard of graph comparisons. We have put our ged implementation as a part of networkx, and offer
in rnaglib.ged the weighting scheme we propose to compare 2.5D graphs. One can call rnaglib.ged.ged() on two
graphs to compare them. However, due to the exponential complexity of the comparison, the maximum size of the graphs
should be around ten nodes, making it more suited for comparing graphlets or subgraphs.

>>> from rnaglib.ged import graph_edit_distance
>>> from rnaglib.utils import graph_from_pdbid
>>> G = graph_from_pdbid("4nlf")
>>> graph_edit_distance(G, G)
... 0.0

Using your own local RNA structures

If you have an mmCIF containing RNA stored locally and you wish to build a 2.5D graph that can be used in RNAglib you
can use the prepare_data module.
To do so, you need to have x3dna-dssr executable in your $PATH which requires a license <http://x3dna.org/>.
The first option is to use the library from a python script, following the example :

>>> from rnaglib.prepare_data import cif_to_graph

>>> pdb_path = '../data/1aju.cif'
>>> graph_nx = cif_to_graph(pdb_path)

Another possibility is to use the shell function that ships with rnaglib.

$ rnaglib_prepare_data --one_mmcif $PATH_TO_YOUR_MMCIF -O /path/to/output

Machine Learning Tutorial

RNAGlib data structures

We have introduced the 2.5D graph format in another tutorial.
RNAGlib provides access to collections of RNAs for machine learning with PyTorch.
It revolves around the usual Dataset and Dataloader objects, along with a Representation object :

	RNADatasets objects are an iterable of RNA data, that returns representations of this data

	The Representation object will return our data in a certain representation (e.g. graphs, voxels, point clouds) as
well as cast to different data science and ML frameworks (DGL, pytorch-geometric, networkx).

	The get_loader function encapsulates automatic data splitting and collating and returns appropriate PyTorch data loaders.

Datasets

The rnaglib.data_loading.RNADataset object builds and provides access to collections of RNAs.
When using the Dataset class, our standard data distribution should be downloaded automatically.
Alternatively, you can choose to provide your own annotated RNAs by providing a data_path.

To create a dataset using our hosted data simply instantiate the RNADataset object.

from rnaglib.data_loading import RNADataset

dataset = RNADataset()

Different datasets can be specified using the following options:

	version=’x.x.x’: which data build to load

	nr=False: by default, we only load non-redundant structures, if you want all structures in the PDB, set this flag to False

	all_graphs: a specific list of pdb ids to iterate through

Datasets can be indexed like a list or you can inspect an individual RNA by its PDBID.

rna_1 = dataset[3]
pdbid = dataset.available_pdbids[3]
rna_2 = dataset.get_pdbid(pdbid)

The returned object is a dictionnary with three entries :

	rna : The raw 2.5D graph in the form of a networkx object which you can inspect as shown in this tutorial.

	rna_name : the name of the PDB being returned

	path : the path to the pdb files

Representations

The next important object for RNAGlib is the representation. Previously, our return only included the raw data.
One can add a Representation object with arguments to post-process this raw data into a more usable data format.
The most trivial one is to ask for a GraphRepresentation. One can choose either networkx, DGL or PyTorch Geometric as
a return type.

By default, this 2.5D graph only includes the connectivity of the graphs.
The user can ask for input nucleotide features and nucleotide targets.
As an example, we use nucleotide identity (‘nt_code’) as input and the binding of an ion (‘binding_ion’) as output.
These two additions are exemplified below :

from rnaglib.representations import GraphRepresentation

graph_rep = GraphRepresentation(framework='dgl')
nt_features = ['nt_code']
nt_targets = ['binding_ion']
dataset = RNADataset(nt_features=nt_features, nt_targets=nt_targets, representations=[graph_rep])
print(dataset[0]['graph'])

>>> {Graph(num_nodes=24, num_edges=58,
 ndata_schemes={'nt_features': Scheme(shape=(4,), dtype=torch.float32),
 'nt_targets': Scheme(shape=(1,), dtype=torch.float32)}
 edata_schemes={'edge_type': Scheme(shape=(), dtype=torch.int64)})}

We currently support two other data representations : PointCloudRepresentation and VoxelRepresentation
More generally, rnaglib.representations.Representation class holds the logic for converting a dataset to one of the above
representations and users can easily sub-class this to create their own representations.

These classes come with their own set of attributes. Users can use several representations at the same time.

from rnaglib.representations import PointCloudRepresentation, VoxelRepresentation

pc_rep = PointCloudRepresentation()
voxel_rep = VoxelRepresentation(spacing=2)

dataset.add_representation(voxel_rep)
dataset.add_representation(pc_rep)
print(dataset[0].keys())

>>> dict_keys(['rna_name', 'rna', 'path', 'graph', 'voxel', 'point_cloud'])

As can be seen, we now have additional keys in the returned dictionnary corresponding to the data represented as voxels
or point clouds.
In our case, the RNA has 24 nucleotides and is approximately 12 Angrstroms wide.
Hence, dataset[0][‘point_cloud’] is a dictionnary that contains two grids in the PyTorch order :

	voxel_feats : torch.Size([4, 6, 5, 6])

	voxel_target : torch.Size([1, 6, 5, 6])

While dataset[0][‘point_cloud’] is a dictionnary that contains one list and three tensors :

	point_cloud_coords torch.Size([24, 3])

	point_cloud_feats torch.Size([24, 4])

	point_cloud_targets torch.Size([24, 1])

	point_cloud_nodes ['1a9n.Q.0', '1a9n.Q.1',... '1a9n.Q.9']

Dataloader

The missing piece is utilities to efficiently load our dataset for machine learning. The first task is to split our data
in a principled way.
To enhance reproducibility, we offer automatic random splitting procedure that avoid loading useless graphs (for instance
graphs with no positive nodes for node classification) and balance the train/test proportions in the multi-task setting.

The other problematic step is to batch our data automatically, as the batching procedure depends on the representations
that are used. These two functionalities are implemented in a straightforward manner :

from torch.utils.data import DataLoader
from rnaglib.data_loading import split_dataset, Collater

train_set, valid_set, test_set = split_dataset(dataset, split_train=0.7, split_valid=0.85)
collater = Collater(dataset=dataset)
train_loader = DataLoader(dataset=train_set, shuffle=True, batch_size=2, num_workers=0, collate_fn=collater.collate)

for batch in train_loader:
 ...

will yield a dictionnary with the same keys and structure as above, for batches of two graphs.

More advanced functionalities

Additional inputs and outputs

Adding more input features to the graphs is straightforward, as you simply have to specify more items in the features list.
A full description of the input features that can be used is available in rnaglib.data.
Similarly, you can seamlessly switch to a multi-task setting by adding more targets. However, doing this affects the splitting procedure.
A side effect could be a slight deviation in the train/validation/test fractions.
The tasks currently implemented are in the set : {‘node_binding_small-molecule’, ‘node_binding_protein’, ‘node_binding_ion’, “node_is_modified”}.
An example of a variation is provided below, the rest of the code is unaffected.

nt_features = ['nt_code', "alpha", "C5prime_xyz", "is_modified"]
nt_targets = ['binding_ion', 'binding_protein']

Unsupervised pre-training

Due to a relatively scarse data, we have found useful to pretrain our networks.
The semi-supervised setting was found to work well, where node embeddings are asked to approximate a similarity function over subgraphs.
More precisely, given two subgraphs g1 and g2, a similarity function K, and a neural embedding function f, we want to approximate K(sg1,sg2) ~ <f(sg1), f(sg2)> .
This was described more precisely in VeRNAl [https://github.com/cgoliver/vernal] .

The datasets and dataloaders natively support the computation of many comparison functions, factored in the SimFunctionNode object.
We also offer the possibility to compute this comparison on a fixed number of sampled nodes from the batch, using the max_size_kernel argument.
To use this functionality, we packaged into an additional Representation.
The loader will then return an additional field in the batch, with a ‘ring’ key that represents the values of the similarity function over subgraphs.

from rnaglib.kernels import node_sim
from rnaglib.representations import RingRepresentation

node_simfunc = node_sim.SimFunctionNode(method='R_1', depth=2)
ring_rep = RingRepresentation(node_simfunc=node_simfunc, max_size_kernel=100)
da.add_representation(ring_rep)
train_loader, _, _ = graphloader.get_loader(dataset=unsupervised_dataset)

The coordinated use of these functionalities is illustrated in the rnaglib.examples: section.

rnaglib.examples

Protein Binding

This script just shows a first very basic example : learn binding protein preference from the nucleotide types and the graph structure

To do so, we choose our data, create a data loader around it, build a RGCN model and train it.

from rnaglib.learning import models, learn
from rnaglib.data_loading import graphloader

Choose the data, features and targets to use and GET THE DATA GOING
node_features = ['nt_code']
node_target = ['binding_protein']
supervised_dataset = loader.SupervisedDataset(node_features=node_features,
 node_target=node_target)
train_loader, validation_loader, test_loader = loader.Loader(dataset=supervised_dataset).get_data()

Define a model, we first embed our data in 10 dimensions, and then add one classification
input_dim, target_dim = supervised_dataset.input_dim, supervised_dataset.output_dim
embedder_model = models.Embedder(dims=[10, 10], infeatures_dim=input_dim)
classifier_model = models.Classifier(embedder=embedder_model, classif_dims=[target_dim])

Finally get the training going
optimizer = torch.optim.Adam(classifier_model.parameters(), lr=0.001)
learn.train_supervised(model=classifier_model,
 optimizer=optimizer,
 train_loader=train_loader)

Small Molecule Binding

This script shows a second more complicated example : learn binding protein preferences as well as small molecules binding from the nucleotide types and the graph structure
We also add a pretraining phase based on the R_graphlets kernel

from rnaglib.learning import models, learn
from rnaglib.data_loading import graphloader
from rnaglib.benchmark import evaluate
from rnaglib.kernels import node_sim

Choose the data, features and targets to use
node_features = ['nt_code']
node_target = ['binding_protein']

Unsupervised phase :
Choose the data and kernel to use for pretraining
print('Starting to pretrain the network')
node_sim_func = node_sim.SimFunctionNode(method='R_graphlets', depth=2)
unsupervised_dataset = loader.UnsupervisedDataset(node_simfunc=node_sim_func,
 node_features=node_features)
train_loader = loader.Loader(dataset=unsupervised_dataset, split=False,
 num_workers=0, max_size_kernel=100).get_data()

Then choose the embedder model and pre_train it, we dump a version of this pretrained model
embedder_model = models.Embedder(infeatures_dim=unsupervised_dataset.input_dim,
 dims=[64, 64])
optimizer = torch.optim.Adam(embedder_model.parameters())
learn.pretrain_unsupervised(model=embedder_model,
 optimizer=optimizer,
 train_loader=train_loader,
 learning_routine=learn.LearningRoutine(num_epochs=10),
 rec_params={"similarity": True, "normalize": False, "use_graph": True, "hops": 2})
torch.save(embedder_model.state_dict(), 'pretrained_model.pth')
print()

Now the supervised phase :
print('We have finished pretraining the network, let us fine tune it')
GET THE DATA GOING, we want to use precise data splits to be able to use the benchmark.
train_split, test_split = evaluate.get_task_split(node_target=node_target)
supervised_train_dataset = loader.SupervisedDataset(node_features=node_features,
 redundancy='NR',
 node_target=node_target,
 all_graphs=train_split)
train_loader = loader.Loader(dataset=supervised_train_dataset, split=False).get_data()

Define a model and train it :
We first embed our data in 64 dimensions, using the pretrained embedder and then add one classification
Then get the training going
classifier_model = models.Classifier(embedder=embedder_model, classif_dims=[supervised_train_dataset.output_dim])
optimizer = torch.optim.Adam(classifier_model.parameters(), lr=0.001)
learn.train_supervised(model=classifier_model,
 optimizer=optimizer,
 train_loader=train_loader,
 learning_routine=learn.LearningRoutine(num_epochs=10))

torch.save(classifier_model.state_dict(), 'final_model.pth')
embedder_model = models.Embedder(infeatures_dim=4, dims=[64, 64])
classifier_model = models.Classifier(embedder=embedder_model, classif_dims=[1])
classifier_model.load_state_dict(torch.load('final_model.pth'))

Get a benchmark performance on the official uncontaminated test set :
metric = evaluate.get_performance(node_target=node_target, node_features=node_features, model=classifier_model)
print('We get a performance of :', metric)

Link Prediction

This is a very basic example of link prediction applied to RNA base pairs.
We use our Embedder object along with the nucleotide ID as features.
This is passed to an edge loader and a base pair predictor model.

from rnaglib.learning import models, learn
from rnaglib.data_loading import graphloader
from rnaglib.benchmark import evaluate

 # Get loader for link prediction,
 # use nucleotide identity as input features and base our fixed train/test split
 # on the binding protein one for reproducibility
 node_features = ['nt_code']
 node_target = ['binding_protein']
 train_split, test_split = evaluate.get_task_split(node_target=node_target)

 train_dataset = loader.GraphDataset(node_features=['nt_code'], all_graphs=train_split)
 test_dataset = loader.GraphDataset(node_features=['nt_code'], all_graphs=test_split)
 train_loader = loader.EdgeLoaderGenerator(loader.Loader(train_dataset, split=False).get_data())
 test_loader = loader.EdgeLoaderGenerator(loader.Loader(test_dataset, split=False).get_data())

 # Choose the data, features and targets to use and GET THE DATA GOING
 embedder_model = models.Embedder(dims=[10, 10], infeatures_dim=train_dataset.input_dim)
 linkpred_model = models.BasePairPredictor(embedder_model)

 # Finally get the training going
 optimizer = torch.optim.Adam(linkpred_model.parameters(), lr=0.001)
 learn.train_linkpred(linkpred_model, optimizer, train_loader, test_loader)

Data Reference

Graph Format

Each graph contains structure information for one model of a PDB entry containing at least one RNA chain.

Graphs are stored in JSON node-link format which can be loaded by
[networkx](https://networkx.org/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_data.html#networkx.readwrite.json_graph.node_link_data).
All data comes from the output of x3dna-dssr which can be downloaded
[here](https://x3dna.org/) and our custom interface extraction tools.

Graphs are dumped as JSONs in the node-link format.

import json
from networkx.readwrite.json_graph import node_link_graph

G = node_link_graph(open('path/to/graph', 'r'))

Nodes

Node IDs

Node IDs are strings in the form [pdb id].[chain name].[residue number].

Node Data

To access node data dictionary:

G.nodes[<node_id>]

These are the keys in the node data dictionary:

	‘index’: (int), relative index along chain starting at 1 (e.g. 1)

	‘index_chain’: (int) 26 (e.g. 26)

	‘chain_name’: (str), name of chain. (e.g. A)

	‘nt_resnum’: (int), residue number according to PDB. (e.g. 101)

	‘nt_name’: (str), nucleotide name (e.g. G)

	‘nt_code’: (str), (e.g. ‘U’)

	‘nt_id’: (str) unique nucleotide ID generated by DSSR. <chain name>.<nt name><nt_resnum> (e.g. ‘A.U42’),

	‘nt_type’: (str) molecule type of residue (e.g. ‘RNA’)

	‘dbn’: (str) dot-bracket notation for the residue (e.g. ‘)’)

	‘summary’: (str) additional residue info (e.g. “anti,~C3’-endo,BI,canonical,non-pair-contact,helix,stem,coaxial-stack”)

	‘alpha’: (float) base angle in degrees [-180, 180].

	‘beta’: (float) base angle

	‘gamma’: (float) base angle

	‘delta’: (float) base angle

	‘epsilon’: (float)

	‘zeta’: (float)

	‘epsilon_zeta’: (float)

	‘bb_type’: (str) Backbone type ‘BI’,

	‘chi’: (float)

	‘glyco_bond’: str (e.g. ‘anti’

	‘C5prime_xyz’: (list), 5’ Carbon xyz coordinates (e.g. `[-1.343, 8.453, 1.288])

	‘P_xyz’: (list) Phosphate coordinates.

	‘form’: (str) (e.g. ‘A’) classification of a dinucleotide step comprising the bp above the given designation and the bp that follows it. Types include ‘A’, ‘B’ or ‘Z’ for the common A-, B- and Z- form helices, ‘.’ for an unclassified step , and ‘x’ for a step without a continuous backbone.

	‘ssZp’: (float) (e.g. 4.41),

	‘Dp’: (float) (e.g. 4.404)

	‘splay_angle’: (float) (e.g. 21.6),

	‘splay_distance’: (float) (e.g. 3.612)

	‘splay_ratio’: (float) (e.g. 0.199)

	‘eta’: (float) (e.g. 169.652),

	‘theta’: -167.457,

	‘eta_prime’: (float) (e.g. -176.189)

	‘theta_prime’: (float) (e.g. -167.27)

	‘eta_base’: (float) (e.g. -135.681)

	‘theta_base’: (float) (e.g. -141.003)

	‘v0’: (float) (e.g 8.194)

	‘v1’: (float) (e.g. -28.393),

	‘v2’: (float)

	‘v3’: (float)

	‘v4’: (float)

	‘amplitude’: (float)

	‘phase_angle’: (float)

	‘puckering’: (str) (e.g. “C3’-endo”)

	‘sugar_class’: (str) (e.g. “~C3’-endo”)

	‘bin’: (str) (e.g. ‘33t’) (name of the 12 bins based on [delta (i -1) , delta , gamma], where delta (i -1) and delta can be either 3 (for C3 ‘- endo sugar) or 2 (for C2 ‘- endo) and gamma can be p/t/ m (for gauche +/ trans / gauche - conformations , respectively) (2 x2x3 =12 combinations : 33p , 33t , … 22m); ‘inc’ refers to incomplete cases (i .e., with missing torsions) , and ‘trig’ to triages (i.e., with torsion angle outliers),[1]

	‘cluster’: (str) (e.g. ‘1c’) (2-char suite name, for one of 53 reported clusters (46 certain and 7 wannabes) , ‘__’ for incomplete cases , and ‘!!’ for outliers),[1]

	‘suiteness’: (float) (measure of conformer - match quality (low to high in range 0 to 1)) [1]

	‘filter_rmsd’: (float)

	‘frame’: (dict) e.g. ({‘rmsd’: 0.006, ‘origin’: [-4.856, 8.564, -1.171], ‘x_axis’: [0.922, 0.386, -0.006], ‘y_axis’: [0.098, -0.25, -0.963], ‘z_axis’: [-0.374, 0.888, -0.269], ‘quaternion’: [0.592, -0.781, -0.155, 0.122]}

	‘sse’: (dict) Secondary structure info (e.g. residue inside third hairpin {‘sse’: ‘hairpin_3’})

	‘binding_protein’: (dict) RNA-Protein interface. If no interface found, None. Else, dictionary (e.g. {‘nt-aa’: ‘C-arg’, ‘nt’: ‘A.C37’, ‘aa’: ‘A.ARG47’, ‘Tdst’: ‘6.62’, ‘Rdst’: ‘-114.00’, ‘Tx’: ‘-1.15’, ‘Ty’: ‘1.89’, ‘Tz’: ‘6.23’, ‘Rx’: ‘-53.57’, ‘Ry’: ‘19.41’, ‘Rz’: ‘-103.42’, ‘sse’: ‘a-helix’})

	‘binding_ion’: (string) molecule ID of ion if residue is at a binding site (otherwise None) (e.g. ‘Ca’)

	‘binding_small-molecule’: (string) molecule ID of small molecule if residue is at a binding site (otherwise None) (e.g. ‘SAM’)

Edge data

Each edge also has an attribute dictionary:

G.edges[(<node_1>, <node_2>)]

	‘index’: (int) Index of edge in DSSR ordering.

	‘nt1’: (str) DSSR nucleotide ID of first base (e.g. ‘A.G17’)

	‘nt2’: (str) DSSR nucleotide ID of second base (e.g. ‘A.G29’)

	‘bp’ (str): Nucleotide identity of paired residues (e.g. ‘G-C’)

	‘name’: (str) (e.g. ‘WC’)

	‘Saenger’: (str) Saenger base pairing category (e.g. ‘19-XIX’),

	‘LW’: (str) Leontis-Westhof base pair geometry category (e.g. ‘cWW’)

	‘DSSR’: (str) Custom DSSR base pair geometry category (e.g. ‘cW-W’)

Graph-level data

Each graph also has an attribute dictionary:

G.graph

	‘dbn’: a dict containing information on the chains contained in the graph, such as the sequences or their length

	‘resolution_{low,high}’: bounds on the resolution, present in most (~80%) of the graphs

	‘proteins’: A list of the residues in contact with a protein

	‘ligands’: A list of the ligands interacting with the graph nucleotides. Each ligand is a dict with the ligand Biopython id, its name, and the rna residues it is bound to

	‘ions’: same thing with ions

Graph creation pipeline
* dssr_to_graphs.py : runs dssr on the cif file to get the first networkx graph
object. It moreover computes the RNA/protein interfaces (since it uses dssr) and annotates at the level of the node.
* annotations.py’: Completes the graph using the mmcif file to include resolution and interaction with small molecules and ions
* main.py : The script to call to build or update the data releases

References

[1] [Richardson et al. (2008): “RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA, 14(3):465-481](https://rnajournal.cshlp.org/content/14/3/465.short)

rnaglib.prepare_data

Functions to build data releases from raw PDBs.

	
rnaglib.prepare_data.filter_dot_edges(graph)

	Remove edges with a ‘.’ in the LW annotation.
This happens in place.

	Parameters:

	graph – networkx graph

	
rnaglib.prepare_data.filter_all(graph_dir, output_dir, filters=['NR'], min_nodes=20)

	Apply filters to a graph dataset.

	Parameters:

	
	graph_dir – where to read graphs from

	output_dir – where to dump the graphs

	filters – list of which filters to apply (‘NR’, ‘Ribo’, ‘NonRibo’)

	min_nodes – skip graphs with fewer than min_nodes nodes (default=20)

	
rnaglib.prepare_data.one_rna_from_cif(cif)

	Build 2.5d graph for one cif using dssr

	Parameters:

	cif – path to mmCIF

	Returns:

	2.5d graph

	
rnaglib.prepare_data.cif_to_graph(cif, output_dir=None, min_nodes=20, return_graph=False)

	Build DDSR graphs for one mmCIF. Requires x3dna-dssr to be in PATH.

	Parameters:

	
	cif – path to CIF

	output_dir – where to dump

	min_nodes – smallest RNA (number of residue nodes)

	return_graph – Boolean to include the graph in the output

	Returns:

	networkx graph of structure.

	
rnaglib.prepare_data.add_graph_annotations(g, cif)

	Adds information at the graph level and on the small molecules partner of an RNA molecule

	Parameters:

	
	g – the nx graph created from dssr output

	cif – the path to a .mmcif file

	Returns:

	the annotated graph, actually the graph is mutated in place

	
rnaglib.prepare_data.hariboss_filter(lig, cif_dict, mass_lower_limit=160, mass_upper_limit=1000)

	
	Sorts ligands into ion / ligand / None
	Returns ions for a specific list of ions, ligands if the hetatm has the right atoms and mass and None otherwise

	Parameters:

	
	lig – A biopython ligand residue object

	cif_dict – The output of the biopython MMCIF2DICT object

	mass_lower_limit –

	mass_upper_limit –

	
rnaglib.prepare_data.chop_all(graph_path, dest, n_jobs=4, parallel=True)

	Chop and dump all the rglib graphs in the dataset.

	Parameters:

	
	graph_path – path to graphs for chopping

	dest – path where chopped graphs will be dumped

	N_jobs:

	number of workers to use

	Paralle:

	whether to use multiprocessing

	
rnaglib.prepare_data.annotate_all(dump_path='../data/annotated/sample_v2', graph_path='../data/chunks_nx', parallel=True, do_hash=True, wl_hops=3, graphlet_size=1, re_annotate=False)

	Routine for all files in a folder

	Parameters:

	
	dump_path –

	graph_path –

	parallel –

	Returns:

	

rnaglib.data_loading

	
class rnaglib.data_loading.RNADataset(data_path=None, version='1.0.0', download_dir=None, redundancy='nr', all_graphs=None, representations=(), rna_features=None, nt_features=None, bp_features=None, rna_targets=None, nt_targets=None, bp_targets=None, annotated=False, verbose=False)

	This class is the main object to hold the core RNA data annotations.
The RNAglibDataset.all_rnas object is a generator networkx objects that hold all the annotations for each RNA in the dataset.
You can also access individual RNAs on-disk with RNAGlibDataset()[idx] or RNAGlibDataset().get_pdbid('1b23')

	Parameters:

	
	representations – List of rnaglib.Representation objects to apply to each item.

	data_path – The path to the folder containing the graphs. If node_sim is not None, this data should be annotated

	version – Version of the dataset to use (default=’0.0.0’)

	redundancy – To use all graphs or just the non redundant set.

	all_graphs – In the given directory, one can choose to provide a list of graphs to use

	
subset(list_of_graphs)

	Create another dataset with only the specified graphs

	Parameters:

	list_of_graphs – a list of graph names

	Returns:

	A graphdataset

	
get_pdbid(pdbid)

	Grab an RNA by its pdbid

	
get_nt_encoding(g, encode_feature=True)

	Get targets for graph g
for every node get the attribute specified by self.node_target
output a mapping of nodes to their targets

	Parameters:

	
	g – a nx graph

	encode_feature – A boolean as to whether this should encode the features or targets

	Returns:

	A dict that maps nodes to encodings

	
compute_dim(node_parser)

	Based on the encoding scheme, we can compute the shapes of the in and out tensors

	Returns:

	

	
compute_features(rna_dict)

	Add 3 dictionaries to the rna_dict wich maps nts, edges, and the whole graph
to a feature vector each. The final converter uses these to include the data in the
framework-specific object.

	
rnaglib.data_loading.get_loader(dataset, batch_size=5, num_workers=0, split=True, split_train=0.7, split_valid=0.85, verbose=False, framework='dgl')

	Fetch a loader object for a given dataset.

	Parameters:

	
	dataset (rnaglib.data_loading.RNADataset) – Dataset for loading.

	batch_size (int) – number of items in batch

	split (bool) – whether to compute splits

	split_train (float) – proportion of dataset to keep for training

	split_valid (float) – proportion of dataset to keep for validation

	verbose (bool) – print updates

	framework (str) – learning framework to use (‘dgl’)

	Returns:

	torch.utils.data.DataLoader

	
class rnaglib.data_loading.Collater(dataset)

	Wrapper for collate function, so we can use different node similarities.
We cannot use functools.partial as it is not picklable so incompatible with Pytorch loading

Initialize a Collater object.

	Parameters:

	node_simfunc – A node comparison function as defined in kernels, to optionally return a pairwise

comparison of the nodes in the batch
:param max_size_kernel: If the node comparison is not None, optionnaly only return a pairwise
comparison between a subset of all nodes, of size max_size_kernel
:param hstack: If True, hstack point cloud return

	Returns:

	a picklable python function that can be called on a batch by Pytorch loaders

	
collate(samples)

	New format that iterates through the possible keys returned by get_item

The graphs are batched, the rings are compared with self.node_simfunc and the features are just put into a list.
:param samples:
:return: a dict

rnaglib.representations

	
class rnaglib.representations.Representation

	Callable object that accepts a raw RNA networkx object along with features and target vector representations
and returns a representation of it (e.g. graph, voxel, point cloud)

	
property name

	Just return the name of the representation

	Returns:

	A string

	
batch(samples)

	Batch a list of voxel samples

	Parameters:

	samples – A list of the output from this representation

	Returns:

	a batched version of it.

	
class rnaglib.representations.GraphRepresentation(clean_edges=True, framework='nx', edge_map={'B35': 19, 'B53': 0, 'cHH': 1, 'cHS': 2, 'cHW': 3, 'cSH': 4, 'cSS': 5, 'cSW': 6, 'cWH': 7, 'cWS': 8, 'cWW': 9, 'tHH': 10, 'tHS': 11, 'tHW': 12, 'tSH': 13, 'tSS': 14, 'tSW': 15, 'tWH': 16, 'tWS': 17, 'tWW': 18}, etype_key='LW', **kwargs)

	Converts RNA into a graph

	
property name

	Just return the name of the representation

	Returns:

	A string

	
batch(samples)

	Batch a list of graph samples

	Parameters:

	samples – A list of the output from this representation

	Returns:

	a batched version of it.

	
class rnaglib.representations.VoxelRepresentation(spacing=2, padding=3, sigma=1.0, **kwargs)

	Converts RNA into a voxel based representation

	
property name

	Just return the name of the representation

	Returns:

	A string

	
batch(samples)

	Batch a list of voxel samples

	Parameters:

	samples – A list of the output from this representation

	Returns:

	a batched version of it.

	
class rnaglib.representations.PointCloudRepresentation(hstack=True, sorted_nodes=True, **kwargs)

	Converts RNA into a point cloud based representation

	
property name

	Just return the name of the representation

	Returns:

	A string

	
batch(samples)

	Batch a list of point cloud samples

	Parameters:

	samples – A list of the output from this representation

	Returns:

	a batched version of it.

	
class rnaglib.representations.RingRepresentation(node_simfunc=None, max_size_kernel=None, hash_path=None, **kwargs)

	Converts RNA into a ring based representation

	
property name

	Just return the name of the representation

	Returns:

	A string

	
batch(samples)

	Batch a list of ring samples

	Parameters:

	samples – A list of the output from this representation

	Returns:

	a batched version of it.

rnaglib.drawing

Draw RNA

	
rnaglib.drawing.rna_draw.make_label(s)

	

	
rnaglib.drawing.rna_draw.process_axis(axis, g, subtitle=None, highlight_edges=None, node_color=None, node_labels=None, node_ids=False, layout='spring', label='LW')

	
Draw a graph on a given axis.

	Parameters:

	
	axis – matplotlib axis to draw on

	g – networkx graph to draw

	subtitle – string to use as a subtitle on this axis

	highlight_edges – A list of edges to highlight on the drawing

	node_color –

	node_labels –

	node_ids –

	label –

	Returns:

	

	
rnaglib.drawing.rna_draw.rna_draw(g, title='', node_ids=False, highlight_edges=None, node_labels=None, node_colors=None, num_clusters=None, pos=None, pos_offset=(0, 0), scale=1, ax=None, show=False, alpha=1, save=False, node_size=250, fontsize=12, format='pdf', seed=None, layout='circular')

	Draw an RNA with the edge labels used by Leontis Westhof

	Parameters:

	
	nx_g –

	title –

	highlight_edges –

	node_colors –

	num_clusters –

	Returns:

	

	
rnaglib.drawing.rna_draw.rna_draw_pair(graphs, subtitles=None, highlight_edges=None, node_colors=None, save=None, show=False, node_ids=False)

	Plot a line of plots of graphs along with a value for each graph. Useful for graph comparison vizualisation

	Parameters:

	
	graphs – iterable nx graphs

	estimated_value – iterable of values of comparison (optional)

	iihighlight_edges –

	node_colors – iterable of node colors

	Returns:

	

	
rnaglib.drawing.rna_draw.rna_draw_grid(graphs, subtitles=None, highlight_edges=None, node_colors=None, row_labels=None, save=None, show=False, format='png', grid_shape=None)

	Plot a line of plots of graphs along with a value for each graph. Useful for graph comparison vizualisation

	Parameters:

	
	graphs – list of lists containing nx graphs all lists must have the same dimension along axis 1. To skip a cell, add a None instead of graph.

	estimated_value – iterable of values of comparison (optional)

	highlight_edges –

	node_colors – iterable of node colors

	Returns:

	

Draw RNA layout

	
rnaglib.drawing.rna_layout.rescale_layout(pos, scale=1)

	Return scaled position array to (-scale, scale) in all axes.

The function acts on NumPy arrays which hold position information.
Each position is one row of the array. The dimension of the space
equals the number of columns. Each coordinate in one column.

To rescale, the mean (center) is subtracted from each axis separately.
Then all values are scaled so that the largest magnitude value
from all axes equals scale (thus, the aspect ratio is preserved).
The resulting NumPy Array is returned (order of rows unchanged).

	Parameters:

	
	pos (numpy array) – positions to be scaled. Each row is a position.

	scale (number (default: 1)) – The size of the resulting extent in all directions.

	Returns:

	pos – scaled positions. Each row is a position.

	Return type:

	numpy array

	
rnaglib.drawing.rna_layout.circular_layout(G, scale=1, center=None, dim=2)

	Position nodes on a circle.

	Parameters:

	
	G (NetworkX graph or list of nodes) – A position will be assigned to every node in G.

	scale (number (default: 1)) – Scale factor for positions.

	center (array-like or None) – Coordinate pair around which to center the layout.

	dim (int) – Dimension of layout.
If dim>2, the remaining dimensions are set to zero
in the returned positions.

	Returns:

	pos – A dictionary of positions keyed by node

	Return type:

	dict

Examples

>>> G = nx.path_graph(4)
>>> pos = nx.circular_layout(G)

Notes

This algorithm currently only works in two dimensions and does not
try to minimize edge crossings.

rnaglib.ged

This submodule is simply a collection of wrapper functions to invoke the above GED functions on our RNA graphs. Refer to the list below for function input parameters.

	
rnaglib.ged.ged(g1, g2, roots=None, upper_bound=None, timeout=None)

	Compute the graph edit distance on RNA graphs (default weighting scheme is adapted to RNA)

	Parameters:

	
	g1 – A networkx graph to compare

	g2 – A networkx graph to compare

	roots – Whether to match rooted subgraphs (forced pairing betweeen these nodes)

	upper_bound – Maximum edit distance to consider.

	timeout – Time after which we want to stop

	Returns:

	The GED value

	
rnaglib.ged.ged_approx(g1, g2, upper_bound=None)

	Compute a faster version of the ged on RNA graphs

	Parameters:

	
	g1 – A networkx graph to compare

	g2 – A networkx graph to compare

	upper_bound – Maximum edit distance to consider.

	Returns:

	The GED value

	
rnaglib.ged.ged(g1, g2, roots=None, upper_bound=None, timeout=None)

	Compute the graph edit distance on RNA graphs (default weighting scheme is adapted to RNA)

	Parameters:

	
	g1 – A networkx graph to compare

	g2 – A networkx graph to compare

	roots – Whether to match rooted subgraphs (forced pairing betweeen these nodes)

	upper_bound – Maximum edit distance to consider.

	timeout – Time after which we want to stop

	Returns:

	The GED value

	
rnaglib.ged.ged_approx(g1, g2, upper_bound=None)

	Compute a faster version of the ged on RNA graphs

	Parameters:

	
	g1 – A networkx graph to compare

	g2 – A networkx graph to compare

	upper_bound – Maximum edit distance to consider.

	Returns:

	The GED value

rnaglib.kernels

Node Similarity

Functions for comparing node similarity.

	
class rnaglib.kernels.node_sim.SimFunctionNode(method, depth, decay=0.5, idf=False, normalization=None, hash_init_path='/home/docs/checkouts/readthedocs.org/user_builds/rnaglib/checkouts/latest/rnaglib/utils/../data/hashing/NR_chops_hash.p')

	Bases: object

Factory object to compute all node similarities. These methods take as input an annotated pair of nodes
and compare them.

These methods are detailed in the supplemental of the paper, but include five methods. These methods frequently
rely on the hungarian algorithm, an algorithm that finds optimal matches according to a cost function.

Three of them compare the edges :

	R_1 compares the histograms of each ring, possibly with an idf weighting (to emphasize differences
in rare edges)

	R_iso compares each ring with the best matching based on the isostericity values

	hungarian compares the whole annotation, with the rings being differentiated with an additional ‘depth’ field.

Then all the nodes are compared based on isostericity and this depth field.

Two of them compare the graphlets. The underlying idea is that just comparing lists of edges does not
constraint the graph structure, while the assembling of graphlet does it more (exceptions can be found but
for most graphs, knowing all graphlets at each depth enables recreating the graph) :

	R_graphlets works like R_iso except that the isostericity is replaced by the GED

	graphlet works like the hungarian except that the isostericity is replaced by the GED

	Parameters:

	
	method – a string that identifies which of these method to use

	depth – The depth to use in the annotations rings

	decay – When using rings comparison function, the weight decay of importance based on the depth (the

closest rings weigh more as they are central to the comparison)
:param idf: Whether to use IDF weighting on the frequency of labels.
:param normalization: We experiment with three normalization scheme, the basal one is just a division of the
score by the maximum value, ‘sqrt’ denotes using the square root of the ratio as a power of the raw value and
‘log’ uses the log. The underlying idea is that we want to put more emphasis on the long matches than on just
matching a few nodes
:param hash_init_path: For the graphlets comparisons, we need to supply a hashing path to be able to store the
values of ged and reuse them based on the hash.

	
add_hashtable(hash_init_path)

	
	Parameters:

	hash_init_path – A string with the full path to a pickled hashtable

	Returns:

	None, modify self.

	
compare(rings1, rings2)

	Compares two nodes represented as their rings.

The edge list for the first hop (centered around a node) is None, so it gets skipped, when we say depth=3,
we want rings[1:4], hence range(1, depth+1) Need to take this into account for normalization

(see class constructor)

	param rings1:

	A list of rings at each depth. Rings contain a list of node, edge or graphlet information at a

given distance from a central node.
:param rings2: Same as above for another node.
:return: Normalized comparison score between the nodes

	
normalize(unnormalized, max_score)

	We want our normalization to be more lenient to longer matches

	Parameters:

	
	unnormalized – a score in [0, max_score]

	max_score – the best possible matching score of the sequences we are given

	Returns:

	a score in [0,1]

	
get_length(ring1, ring2, graphlets=False)

	This is meant to return an adapted ‘length’ that represents the optimal score obtained when matching all the
elements in the two rings at hands

	param rings1:

	A list of rings at each depth. Rings contain a list of node, edge or graphlet information at a

given distance from a central node.
:param rings2: Same as above for another node.
:param graphlets: Whether we use graphlets instead of edges. Then no isostericity can be used to compute length

	Returns:

	a float that represents the score of a perfect match

	
static delta_indices_sim(i, j, distance=False)

	We need a scoring related to matching different depth nodes.
Returns a positive score in [0,1]

	Parameters:

	
	i – pos of the first node

	j – pos of the second node

	Returns:

	A normalized value of their distance (exp(abs(i-j))

	
get_cost_nodes(node_i, node_j, bb=False, pos=False)

	Compare two nodes and returns a cost.

Returns a positive number that has to be negated for minimization

:param node_i : This either just contains a label to be compared with isostericity, or a tuple that also
includes distance from the root node
:param node_j : Same as above
:param bb : Check if what is being compared is backbone (no isostericity then)
:param pos: if pos is true, nodes are expected to be (edge label, distance from root) else just a edge label.
pos is True when used from a comparison between nodes from different rings
:return: the cost of matching those two nodes

	
R_1(ring1, ring2)

	Compute R_1 function over lists of features by counting intersect and normalise by the number

	Parameters:

	
	ring1 – list of features

	ring2 – Same as above for other node

	Returns:

	Score

	
R_iso(list1, list2)

	Compute R_iso function over lists of features by matching each ring with
the hungarian algorithm on the iso values

We do a separate computation for backbone.

	Parameters:

	
	list1 – list of features

	list2 – ’’

	Returns:

	Score

	
hungarian(rings1, rings2)

	Compute hungarian function over lists of features by adding a depth field into each ring (based on its index
in rings). Then we try to match all nodes together, to deal with bulges for instances.

We do a separate computation for backbone.

	Parameters:

	
	list1 – list of features

	list2 – ’’

	Returns:

	Score

	
graphlet_cost_nodes(node_i, node_j, pos=False, similarity=False)

	
	Returns a node distance between nodes represented as graphlets
	Compare two nodes and returns a cost.

Returns a positive number that has to be negated for minimization

:param node_i : This either just contains a label to be compared with isostericity, or a tuple that also
includes distance from the root node
:param node_j : Same as above
:param pos: if pos is true, nodes are expected to be (graphlet, distance from root) else just a graphlet.
pos is True when used from a comparison between nodes from different rings
:return: the cost of matching those two nodes

	
R_graphlets(ring1, ring2)

	Compute R_graphlets function over lists of features.

	Parameters:

	
	ring1 – list of list of graphlets

	ring2 – Same as above for other node

	Returns:

	Score

	
graphlet(rings1, rings2)

	This function performs an operation similar to the hungarian algorithm using ged between graphlets instead of
isostericity.

We also add a distance to root node attribute to each graphlet and then match them optimally

	Parameters:

	
	ring1 – list of list of graphlets

	ring2 – Same as above for other node

	Returns:

	Score

	
rnaglib.kernels.node_sim.graph_edge_freqs(graphs, stop=False)

	Get IDF for each edge label over whole dataset.
First get a total frequency dictionnary :{‘CWW’: 110, ‘TWW’: 23}
Then compute IDF and returns the value.

	Parameters:

	
	graphs – The graphs over which to compute the frequencies, a list of nx graphs

	stop – Set to True for just doing it on a subset

	Returns:

	A dict with the idf values.

	
rnaglib.kernels.node_sim.pdist_list(rings, node_sim)

	Defines the block creation using a list of rings at the graph level (should also ultimately include trees)
Creates a SIMILARITY matrix.

	Parameters:

	
	rings – a list of rings, dictionnaries {node : (nodelist, edgelist)}

	node_sim – the pairwise node comparison function

	Returns:

	the upper triangle of a similarity matrix, in the form of a list

	
rnaglib.kernels.node_sim.k_block_list(rings, node_sim)

	Defines the block creation using a list of rings at the graph level (should also ultimately include trees)
Creates a SIMILARITY matrix.

	Parameters:

	
	rings – a list of rings, dictionnaries {node : (nodelist, edgelist)}

	node_sim – the pairwise node comparison function

	Returns:

	A whole similarity matrix in the form of a numpy array that follows the order of rings

	
rnaglib.kernels.node_sim.simfunc_time(simfuncs, graph_path, batches=1, batch_size=5, names=None)

	Do time benchmark on a list of simfunc.

	Parameters:

	
	simfuncs –

	graph_path –

	batches –

	batch_size –

	names –

	Returns:

	

rnaglib.learning

Models

Learning

rnaglib.utils

General utilities for handling RNA structures and graphs.

	
rnaglib.utils.download_graphs(redundancy='nr', version='1.0.0', annotated=False, chop=False, overwrite=False, data_root=None, verbose=False)

	Based on the options, get the right data from the latest release and put it in download_dir.

	Parameters:

	
	redundancy – Whether to include all RNAs or just a non-redundant set as defined by BGSU

	annotated – Whether to include graphlet annotations in the graphs. This will also create a hashing directory and table

	overwrite – To overwrite existing data

	download_dir – Where to save this data. Defaults to ~/.rnaglib/

	Returns:

	the path of the data along with its hashing.

	
rnaglib.utils.get_rna_list(nr_only=False)

	Fetch a list of PDBs containing RNA from RCSB API.

	
rnaglib.utils.graph_from_pdbid(pdbid, graph_dir=None, version='1.0.0', annotated=False, chop=False, redundancy='nr', graph_format='json')

	Fetch an annotated graph with a PDBID.

	Parameters:

	
	pdbid – PDB id to fetch

	graph_dir – path containing annotated graphs

	graph_format – which format to load (JSON, or networkx)

	
rnaglib.utils.load_graph(filename)

	This is a utility function that supports loading from json or pickle
Sometimes, the pickle also contains rings in the form of a node dict,
in which case the rings are added into the graph

	Parameters:

	filename – json or pickle filename

	Returns:

	networkx DiGraph object

	
rnaglib.utils.dump_json(filename, graph)

	Just a shortcut to dump a json graph more compactly

	Parameters:

	
	filename – The dump name

	graph – The graph to dump

	
rnaglib.utils.load_json(filename)

	Just a shortcut to load a json graph more compactly

	Parameters:

	filename – The dump name

	Returns:

	The loaded graph

	
rnaglib.utils.reorder_nodes(g)

	Reorder nodes in graph

	Parameters:

	g (networkx.DiGraph) – Pass a graph for node reordering.

	Return h:

	(nx DiGraph)

	
rnaglib.utils.update_RNApdb(pdir, nr_only=True)

	Download a list of RNA containing structures from the PDB
overwrite exising files

	Parameters:

	pdbdir – path containing downloaded PDBs

	Returns rna:

	list of PDBIDs that were fetched.

	
rnaglib.utils.fix_buggy_edges(graph, label='LW', strategy='remove', edge_map={'B35': 19, 'B53': 0, 'cHH': 1, 'cHS': 2, 'cHW': 3, 'cSH': 4, 'cSS': 5, 'cSW': 6, 'cWH': 7, 'cWS': 8, 'cWW': 9, 'tHH': 10, 'tHS': 11, 'tHW': 12, 'tSH': 13, 'tSS': 14, 'tSW': 15, 'tWH': 16, 'tWS': 17, 'tWW': 18})

	Sometimes some edges have weird names such as t.W representing a fuzziness.
We just remove those as they don’t deliver a good information

	Parameters:

	
	graph –

	strategy – How to deal with it : for now just remove them.

In the future maybe add an edge type in the edge map ?
:return:

	
rnaglib.utils.dangle_trim(graph)

	Recursively remove dangling nodes from graph, with in place modification

	Parameters:

	graph – Nx graph

	Returns:

	trimmed graph

	
rnaglib.utils.gap_fill(original_graph, graph_to_expand)

	If we subgraphed, get rid of all degree 1 nodes by completing them with one more hop

	Parameters:

	
	original_graph – nx graph

	graph_to_expand – nx graph that needs to be expanded to fix dangles

	Returns:

	the expanded graph

	
rnaglib.utils.extract_graphlet(graph, n, size=1, label='LW')

	Small util to extract a graphlet around a node

	Parameters:

	
	graph – Nx graph

	n – a node in the graph

	size – The depth to consider

	Returns:

	The graphlet as a copy

	
rnaglib.utils.build_node_feature_parser(asked_features=None, node_feature_map={'C5prime_xyz': <rnaglib.utils.feature_maps.ListEncoder object>, 'Dp': <rnaglib.utils.feature_maps.FloatEncoder object>, 'P_xyz': <rnaglib.utils.feature_maps.ListEncoder object>, 'alpha': <rnaglib.utils.feature_maps.FloatEncoder object>, 'amplitude': <rnaglib.utils.feature_maps.FloatEncoder object>, 'bb_type': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'beta': <rnaglib.utils.feature_maps.FloatEncoder object>, 'bin': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'binding_ion': <rnaglib.utils.feature_maps.BoolEncoder object>, 'binding_protein': <rnaglib.utils.feature_maps.BoolEncoder object>, 'binding_protein_Rdst': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Rx': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Ry': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Rz': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Tdst': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Tx': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Ty': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_Tz': <rnaglib.utils.feature_maps.FloatEncoder object>, 'binding_protein_aa': None, 'binding_protein_id': None, 'binding_protein_nt': None, 'binding_protein_nt-aa': None, 'binding_small-molecule': <rnaglib.utils.feature_maps.BoolEncoder object>, 'chain_name': None, 'chi': <rnaglib.utils.feature_maps.FloatEncoder object>, 'cluster': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'dbn': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'delta': <rnaglib.utils.feature_maps.FloatEncoder object>, 'epsilon': <rnaglib.utils.feature_maps.FloatEncoder object>, 'epsilon_zeta': <rnaglib.utils.feature_maps.FloatEncoder object>, 'eta': <rnaglib.utils.feature_maps.FloatEncoder object>, 'eta_base': <rnaglib.utils.feature_maps.FloatEncoder object>, 'eta_prime': <rnaglib.utils.feature_maps.FloatEncoder object>, 'filter_rmsd': <rnaglib.utils.feature_maps.FloatEncoder object>, 'form': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'frame_origin': <rnaglib.utils.feature_maps.ListEncoder object>, 'frame_quaternion': <rnaglib.utils.feature_maps.ListEncoder object>, 'frame_rmsd': <rnaglib.utils.feature_maps.FloatEncoder object>, 'frame_x_axis': <rnaglib.utils.feature_maps.ListEncoder object>, 'frame_y_axis': <rnaglib.utils.feature_maps.ListEncoder object>, 'frame_z_axis': <rnaglib.utils.feature_maps.ListEncoder object>, 'gamma': <rnaglib.utils.feature_maps.FloatEncoder object>, 'glyco_bond': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'index': None, 'index_chain': None, 'is_broken': <rnaglib.utils.feature_maps.BoolEncoder object>, 'is_modified': <rnaglib.utils.feature_maps.BoolEncoder object>, 'nt_code': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'nt_id': None, 'nt_name': None, 'nt_resnum': None, 'nt_type': None, 'phase_angle': <rnaglib.utils.feature_maps.FloatEncoder object>, 'puckering': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'splay_angle': <rnaglib.utils.feature_maps.FloatEncoder object>, 'splay_distance': <rnaglib.utils.feature_maps.FloatEncoder object>, 'splay_ratio': <rnaglib.utils.feature_maps.FloatEncoder object>, 'ssZp': <rnaglib.utils.feature_maps.FloatEncoder object>, 'sse_sse': None, 'sugar_class': <rnaglib.utils.feature_maps.OneHotEncoder object>, 'suiteness': <rnaglib.utils.feature_maps.FloatEncoder object>, 'summary': None, 'theta': <rnaglib.utils.feature_maps.FloatEncoder object>, 'theta_base': <rnaglib.utils.feature_maps.FloatEncoder object>, 'theta_prime': <rnaglib.utils.feature_maps.FloatEncoder object>, 'v0': <rnaglib.utils.feature_maps.FloatEncoder object>, 'v1': <rnaglib.utils.feature_maps.FloatEncoder object>, 'v2': <rnaglib.utils.feature_maps.FloatEncoder object>, 'v3': <rnaglib.utils.feature_maps.FloatEncoder object>, 'v4': <rnaglib.utils.feature_maps.FloatEncoder object>, 'zeta': <rnaglib.utils.feature_maps.FloatEncoder object>})

	This function will load the predefined feature maps available globally.
Then for each of the features in ‘asked feature’, it will return an encoder object for each of the asked features
in the form of a dict {asked_feature : EncoderObject}

If some keys don’t exist, will raise an Error. However if some keys are present but problematic,
this will just cause a printing of the problematic keys
:param asked_features: A list of string keys that are present in the encoder
:return: A dict {asked_feature : EncoderObject}

	
rnaglib.utils.build_hash_table(graph_dir, hasher, graphlets=True, max_graphs=0, graphlet_size=1, mode='count', label='LW', directed=True)

	Iterates over nodes of the graphs in graph dir and fill a hash table with their graphlets hashes

	Parameters:

	
	graph_dir –

	hasher –

	graphlets –

	max_graphs –

	graphlet_size –

	mode –

	label –

	Returns:

	

rnaglib.config

Build Isostericity Matrix

	
rnaglib.config.build_iso_mat.get_undirected_iso(bpa, bpb)

	Given two directed edges, get the values from the undirected isostericity matrix

	Parameters:

	
	bpa (str) – LW edge code

	bpb (str) – LW edge code

	Returns:

	isostericty value

:rtype float

	
rnaglib.config.build_iso_mat.build_iso()

	This function builds a directed isostericity matrix

The heuristic is as follows :
- It has a diagonal of ones : max similarity is self
- Backbone is set aside, and has a little cost for reversing the direction
- Different edges types are computed to have the associated undirected isostericity value

	Returns:

	A np matrix that yields the isostericity values, ordered as EDGE_MAP

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rnaglib	

 	
 	
 rnaglib.config.build_iso_mat	

 	
 	
 rnaglib.data_loading	

 	
 	
 rnaglib.drawing.rna_draw	

 	
 	
 rnaglib.drawing.rna_layout	

 	
 	
 rnaglib.ged	

 	
 	
 rnaglib.kernels.node_sim	

 	
 	
 rnaglib.prepare_data	

 	
 	
 rnaglib.representations	

 	
 	
 rnaglib.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V

A

 	
 	add_graph_annotations() (in module rnaglib.prepare_data)

 	
 	add_hashtable() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	annotate_all() (in module rnaglib.prepare_data)

B

 	
 	batch() (rnaglib.representations.GraphRepresentation method)

 	(rnaglib.representations.PointCloudRepresentation method)

 	(rnaglib.representations.Representation method)

 	(rnaglib.representations.RingRepresentation method)

 	(rnaglib.representations.VoxelRepresentation method)

 	
 	build_hash_table() (in module rnaglib.utils)

 	build_iso() (in module rnaglib.config.build_iso_mat)

 	build_node_feature_parser() (in module rnaglib.utils)

C

 	
 	chop_all() (in module rnaglib.prepare_data)

 	cif_to_graph() (in module rnaglib.prepare_data)

 	circular_layout() (in module rnaglib.drawing.rna_layout)

 	collate() (rnaglib.data_loading.Collater method)

 	
 	Collater (class in rnaglib.data_loading)

 	compare() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	compute_dim() (rnaglib.data_loading.RNADataset method)

 	compute_features() (rnaglib.data_loading.RNADataset method)

D

 	
 	dangle_trim() (in module rnaglib.utils)

 	delta_indices_sim() (rnaglib.kernels.node_sim.SimFunctionNode static method)

 	
 	download_graphs() (in module rnaglib.utils)

 	dump_json() (in module rnaglib.utils)

E

 	
 	extract_graphlet() (in module rnaglib.utils)

F

 	
 	filter_all() (in module rnaglib.prepare_data)

 	
 	filter_dot_edges() (in module rnaglib.prepare_data)

 	fix_buggy_edges() (in module rnaglib.utils)

G

 	
 	gap_fill() (in module rnaglib.utils)

 	ged() (in module rnaglib.ged), [1]

 	ged_approx() (in module rnaglib.ged), [1]

 	get_cost_nodes() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	get_length() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	get_loader() (in module rnaglib.data_loading)

 	get_nt_encoding() (rnaglib.data_loading.RNADataset method)

 	
 	get_pdbid() (rnaglib.data_loading.RNADataset method)

 	get_rna_list() (in module rnaglib.utils)

 	get_undirected_iso() (in module rnaglib.config.build_iso_mat)

 	graph_edge_freqs() (in module rnaglib.kernels.node_sim)

 	graph_from_pdbid() (in module rnaglib.utils)

 	graphlet() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	graphlet_cost_nodes() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	GraphRepresentation (class in rnaglib.representations)

H

 	
 	hariboss_filter() (in module rnaglib.prepare_data)

 	
 	hungarian() (rnaglib.kernels.node_sim.SimFunctionNode method)

K

 	
 	k_block_list() (in module rnaglib.kernels.node_sim)

L

 	
 	load_graph() (in module rnaglib.utils)

 	
 	load_json() (in module rnaglib.utils)

M

 	
 	make_label() (in module rnaglib.drawing.rna_draw)

 	
 module

 	rnaglib.config.build_iso_mat

 	rnaglib.data_loading

 	rnaglib.drawing.rna_draw

 	rnaglib.drawing.rna_layout

 	rnaglib.ged, [1]

 	rnaglib.kernels.node_sim

 	rnaglib.prepare_data

 	rnaglib.representations

 	rnaglib.utils

N

 	
 	name (rnaglib.representations.GraphRepresentation property)

 	(rnaglib.representations.PointCloudRepresentation property)

 	(rnaglib.representations.Representation property)

 	(rnaglib.representations.RingRepresentation property)

 	(rnaglib.representations.VoxelRepresentation property)

 	
 	normalize() (rnaglib.kernels.node_sim.SimFunctionNode method)

O

 	
 	one_rna_from_cif() (in module rnaglib.prepare_data)

P

 	
 	pdist_list() (in module rnaglib.kernels.node_sim)

 	
 	PointCloudRepresentation (class in rnaglib.representations)

 	process_axis() (in module rnaglib.drawing.rna_draw)

R

 	
 	R_1() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	R_graphlets() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	R_iso() (rnaglib.kernels.node_sim.SimFunctionNode method)

 	reorder_nodes() (in module rnaglib.utils)

 	Representation (class in rnaglib.representations)

 	rescale_layout() (in module rnaglib.drawing.rna_layout)

 	RingRepresentation (class in rnaglib.representations)

 	rna_draw() (in module rnaglib.drawing.rna_draw)

 	rna_draw_grid() (in module rnaglib.drawing.rna_draw)

 	rna_draw_pair() (in module rnaglib.drawing.rna_draw)

 	RNADataset (class in rnaglib.data_loading)

 	
 rnaglib.config.build_iso_mat

 	module

 	
 rnaglib.data_loading

 	module

 	
 	
 rnaglib.drawing.rna_draw

 	module

 	
 rnaglib.drawing.rna_layout

 	module

 	
 rnaglib.ged

 	module, [1]

 	
 rnaglib.kernels.node_sim

 	module

 	
 rnaglib.prepare_data

 	module

 	
 rnaglib.representations

 	module

 	
 rnaglib.utils

 	module

S

 	
 	simfunc_time() (in module rnaglib.kernels.node_sim)

 	
 	SimFunctionNode (class in rnaglib.kernels.node_sim)

 	subset() (rnaglib.data_loading.RNADataset method)

U

 	
 	update_RNApdb() (in module rnaglib.utils)

V

 	
 	VoxelRepresentation (class in rnaglib.representations)

rnaglib.benchmark

Evaluate Models

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 RNAGlib Official Documentation

_images/Fig1.png
~N
>>> rnaglib.drawing.draw(G) | f-.. >>> G.data
° T {
o N\ - 'pdbid': 'anlf',
T Y 'seq': 'ACUU...',
N N\ ‘dbn': "((...))}
4 & 'reso': 4.0
i ---------- }
2
T
o, v~ |Y—_— T
o . >>> G.edges[3] >>> G.nodes[11]
Yo . .
‘ { ‘nt_code’: ‘A’
& Tl rwes TESH!, Ieheriimis 9€°,
° 1 1.
.\‘o 'ntl': '4nlf.C.4', ‘P°5|: 32,
"nt2': '4nlf.c.8, xyz': [3.1, -1, 2],
ibackbone': False ‘chem_mod’: False,
.'\. } 'prot_bind': True
\.) }

_images/bp.png
is_pocket
w— False
e True

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Proportion

_images/1qvg_graphandchimera.png
> O

_images/g.png

_images/sse.png
hairpin

junction
bulge is_pocket
e False
s True

0.00 0.05 0.10 0.15 0.20

Proportion

_static/file.png

